This paper presents research focused on studying the behaviour and properties of wood-cement composites under changes in relative humidity. The behaviour and the resulting changes in properties with variations in air (relative) humidity are significantly influenced by the chips contained. The chips are mineralised or stabilised during the manufacturing process. The by-product (particle mixture) from the production of cement-bonded particleboards, which was used to modify the composition of the composites, already contained mineralised spruce chips (i.e. stabilised properties and structure). The goal of the research was to study the sorption mechanisms in terms of dimensional and volumetric changes, including the assessment of the composite materials' performance properties (density, strength characteristics and modulus of elasticity). Thus, the influence of spruce chips stabilization in terms of different matrix compositions of the composites was also partially, indirectly analysed. Three variants of composites were tested - 2 types of reference (based on Portland and blended cement); 1 type with modification of the binder and filler with particle mixture produced during the production of cement particleboards (4% cement substitution, 4% substitution of primary chips). For the determination of each point of the sorption curves, the test bodies were always exposed to a given moisture content for a period of time to allow their mass to settle. The sorption isotherms indicate the different behaviour of the plates during the increase and decrease of the ambient air humidity. Differences were also observed in the case of hysteresis. The modification of the composition of the mixture for the production of cement-bonded particleboards has an effect, among other things, on the stabilisation of the spruce chips. The changes in physical and mechanical properties are practically negligible in terms of the practical use of the boards with modified composition.