Hydroizolace střechy je obvykle přístupná, zatímco hydroizolace spodní stavby je vždy velmi složitě přístupná a jakákoliv její oprava je finančně velmi náročná. Rozhodujícím prvkem kvality je pak realizace hydroizolací.
U dřevěných nosníků se někdy používají zářezy v místech uložení – zpravidla na dolní straně nosníku pro zmenšení celkové výšky konstrukce stropu, popř. střechy nebo pro vyrovnání úrovně horního okraje nosníku s přilehlými konstrukčními prvky, méně často na horní straně nosníku, například pro osazení střešního okapu. Podíváme se na pravidla pro dřevěné nosníky se zářezem v podpoře.
Je třeba rozšířit zkoušky drátkobetonu do oblasti tahových pevností. Diagram odolnosti, který je v článku uveden, je výchozím materiálem pro určení tahových pevností drátkobetonu. V článku jsou uvedeny vzorce pro výpočet napětí, podle kterých může výrobce drátkobetonu vystavit doklad o jeho pevnostní třídě při vzniku makrotrhliny a při dohodnutém průhybu δt,1 = 3,5 mm.
V pórovitých materiálech, ke kterým patří také dřevo a materiály vyrobené na bázi dřeva, je obsaženo vždy určité množství vody. A to v závislosti na teplotě, vlhkosti a tlaku okolního vzduchu. Jedná se o vodu fyzikálně vázanou. Ta může být ve dřevě obsažena jak v buněčných stěnách (tzv. voda vázaná), tak také v buněčných dutinách (tzv. voda volná).
Hlavní překážkou, která brání většímu využívání vláknobetonu v praxi, je nedostatek podkladů pro projektanty, kteří by mohli navrhovat vláknobetonové konstrukce, nebo nosné prvky. Mezi podstatné nedostatky patří nejednotný způsob zkoušení vláknobetonu, samotné zatřídění vláknobetonu do příslušných pevnostních tříd.
Recenzovaný Kvalitu vnitřního prostředí staveb bezesporu ovlivňuje celá řada chemických látek, jež si pouštíme do domovů, kanceláří a mnoha dalších prostor. Následující text pojednává o látkách, které se do vzduchu uvolňují z předmětů, jimiž jsou místnosti vybaveny, tedy nábytek, podlahy a podlahové krytiny, tapety, tkaniny a podobně, nebo se při zařizování bytu používají – typicky nátěrové hmoty, lepidla, tmely.
Nejčastější systém montovaných domů na bázi dřeva s nosnou kostrou z řeziva a nosnými nebo výztužnými plášti z deskových materiálů se podle způsobu konstrukce a provádění buď vyrábí z jednotlivých přířezů řeziva a deskových materiálů v zásadě na staveništi nebo domy pozůstávají z prefabrikovaných stěnových případně i stropních panelů.
Mezi nedostatky vznikající na fasádách panelových domů patří velmi často i poruchy vlivem objemových změn osluněných stěn a nesprávně provedených stykových detailů mezi panely. Někdy pro jejich odstranění stačí opakovaná oprava vadných styků, jindy je nutné překrýt tyto spáry zateplovacím systémem. Jedním takovým případem se zabývá tento příspěvek.
Článek popisuje experiment, při kterém byl analyzován vliv délky hydratace cementu na vlastnosti betonu. Byla stanovena pevnost v tlaku betonu a dynamická i statická hodnota modulu pružnosti betonu. Jediným proměnným činitelem byla délka hydratace. Výsledkem jsou grafické a tabelární výstupy naměřených hodnot.
Obnovou plochej strechy panelových bytových domov sa zabezpečia základné požiadavky na hygienu, zdravie, životné prostredie, teplotnú ochranu a zníženie energetickej náročnosti. Článok je venovaný tejto problematike, a to s poukázaním na súčasný stav plochých striech, ako aj so zásadami riešenia obnovy.
Lze říct, že střešní plášť je asi nejvíce namáhanou konstrukcí obálky budov. Hlavním úkolem je chránit objekt před většinou klimatických jevů, především však před srážkovou vodou v obou v úvahu připadajících skupenstvích. Zajímavou variantou je použití tzv. extrudovaného polystyrénu, který díky vypěňování pod vysokým tlakem má uzavřenou buněčnou strukturu, tím pádem velmi nízkou nasákavost. Může být tedy použit v tzv. obrácených skladbách.
Príspevok prezentuje originálnu metódu výpočtu ΔU hodnoty (zvýšenie súčiniteľa prechodu tepla vplyvom tepelných mostov) na reálnom bytovom dome. Bytový dom je realizovaný v rôznych variantoch riešenia, a to bez zateplenia obvodových stien a zo zateplením z vonkajšej a vnútornej strany, tak aby bolo možné sledovať tento vplyv na výslednú hodnotu ΔU.
Mezi 3. a 13. říjnem 2013 se v Kalifornském Orange County Great Park u města Irvine konal již šestý ročník prestižní mezinárodní soutěž univerzit U.S. Solar Decathlon 2013. Loni se zúčastnil i Team Czech Republic z ČVUT v Praze, který obsadil celkové třetí místo. Druhý díl článku podrobně popisuje technické zařízení domu s názvem AIR House.
Mezi 3. a 13. říjnem 2013 se v Kalifornském Orange County Great Park u města Irvine konal již šestý ročník prestižní mezinárodní soutěž univerzit U.S. Solar Decathlon 2013. Loni se zúčastnil i Team Czech Republic z ČVUT v Praze, který obsadil celkové třetí místo. Článek popisuje pravidla soutěže a detailně se věnuje technickému řešení soutěžního domu s názvem AIR House.