Větráním místnosti rozumíme zajišťování přívodu, nejčastěji venkovního vzduchu, který obsahuje zanedbatelné nebo nižší koncentrace škodliviny, než jaké jsou produkované v místnosti.
Jedním z hlavních ukazatelů kvality pasivní dřevostavby je zajištění kvalitního zdravého vnitřního prostředí. Velký důraz je kladen na výběr nejvhodnějších materiálů a to nejen pro samotnou konstrukci stavby, ale i pro jednotlivé komponenty. Dřevo, jako ekologický stavební materiál, je velmi vhodné pro výstavbu pasivních domů. Podívejte se na několik příkladů a možností kvality pasivního domu.
Jedním z hlavních ukazatelů kvality pasivní dřevostavby je zajištění kvalitního zdravého vnitřního prostředí. Velký důraz je kladen na výběr nejvhodnějších materiálů a to nejen pro samotnou konstrukci stavby, ale i pro jednotlivé komponenty. Dřevo, jako ekologický stavební materiál, je velmi vhodné pro výstavbu pasivních domů. Podívejte se na několik příkladů a možností kvality pasivního domu.
Při řešení požární bezpečnosti staveb je třeba znát hodnoty požární odolnosti stavebních výrobků a konstrukcí a navrhovat konstrukce, které požadované hodnoty požární odolnosti splní. Text je zpracován odborníky z vědecké, výzkumné a pedagogické oblasti a je určen projektantům a pracovníkům státní správy na úseku požární bezpečnosti staveb.
Při řešení požární bezpečnosti staveb je třeba znát hodnoty požární odolnosti stavebních výrobků a konstrukcí a navrhovat konstrukce, které požadované hodnoty požární odolnosti splní. Text je zpracován odborníky z vědecké, výzkumné a pedagogické oblasti a je určen projektantům a pracovníkům státní správy na úseku požární bezpečnosti staveb.
Nedílným posouzením nových, ale i stávajících konstrukcí je ověření jejich odolnosti za mimořádných situací. Jednou z častých mimořádných situací je požár. Požaduje-li se stanovení požární odolnosti z hlediska stavební mechaniky, musí být konstrukce navrženy a provedeny takovým způsobem, aby si zachovaly svou nosnou funkci během příslušného požárního namáhání.
Nedílným posouzením nových, ale i stávajících konstrukcí je ověření jejich odolnosti za mimořádných situací. Jednou z častých mimořádných situací je požár. Požaduje-li se stanovení požární odolnosti z hlediska stavební mechaniky, musí být konstrukce navrženy a provedeny takovým způsobem, aby si zachovaly svou nosnou funkci během příslušného požárního namáhání.
Jednoduché, přírodní nátěry k ochraně konstrukčního dřeva před ohněm a požáry byly užívány již ve starověku. Jejich stopy nacházíme na povrchu některých historických konstrukcí (Drdácký et al. 2005). Rozvoj chemického průmyslu v 19. a 20. století umožnil vývoj a pozdější intenzivní aplikaci nových retardérů hoření na dřevěné prvky běžných stavebních konstrukcí.
Jednoduché, přírodní nátěry k ochraně konstrukčního dřeva před ohněm a požáry byly užívány již ve starověku. Jejich stopy nacházíme na povrchu některých historických konstrukcí (Drdácký et al. 2005). Rozvoj chemického průmyslu v 19. a 20. století umožnil vývoj a pozdější intenzivní aplikaci nových retardérů hoření na dřevěné prvky běžných stavebních konstrukcí.
Útlumu zvuku ohybem vlnění se využívá při návrhu protihlukových stěn, clon, bariér a valů podél komunikací s intenzivní pozemní dopravou (silniční, tramvajovou i železniční). Do míst za překážkou v cestě šíření zvuku se zvukové vlny šíří ohybem. Při ohybu dochází ke snížení intenzity zvuku oproti stavu, kdy by v cestě šíření překážka nebyla.
Útlumu zvuku ohybem vlnění se využívá při návrhu protihlukových stěn, clon, bariér a valů podél komunikací s intenzivní pozemní dopravou (silniční, tramvajovou i železniční). Do míst za překážkou v cestě šíření zvuku se zvukové vlny šíří ohybem. Při ohybu dochází ke snížení intenzity zvuku oproti stavu, kdy by v cestě šíření překážka nebyla.
Příspěvek pojednává o problematice nežádoucí kondenzace vodní páry na vnitřním povrchu stavebních konstrukcí. V příspěvku jsou analyzovány stavebně fyzikální příčiny povrchové kondenzace vodní páry. Dále je zde pojednáno o možnostech technických opatření vedoucích k eliminaci uvedeného negativního jevu.
Příspěvek pojednává o problematice nežádoucí kondenzace vodní páry na vnitřním povrchu stavebních konstrukcí. V příspěvku jsou analyzovány stavebně fyzikální příčiny povrchové kondenzace vodní páry. Dále je zde pojednáno o možnostech technických opatření vedoucích k eliminaci uvedeného negativního jevu.
Střecha má chránit proti mrazu, dešti, sněhu a větru nejen uživatele objektu, ale veškeré konstrukce a hodnoty pod ní. Na střechu je nutno nahlížet v širších souvislostech – jako je souvrství krytiny, pojistných fólií, tepelných izolací, krovů, vnitřních obkladů atd. Krytina ze skládaných prvků sama o sobě nemůže být vodotěsná vůči hydrostatickému tlaku.
V posledních letech je stále diskutovaná otázka, jak výrazně je ovlivněn součinitel prostupu tepla transparentního prvku ve vztahu k použitému typu zasklívacího rámečku (profilu). Na trhu jsou k dispozici v zásadě dva typy plastových rámečků a rámečky nerezové (místo hliníkových) se spoustou protichůdných odborných názorů o jejich kvalitě a parametrech.
V posledních letech je stále diskutovaná otázka, jak výrazně je ovlivněn součinitel prostupu tepla transparentního prvku ve vztahu k použitému typu zasklívacího rámečku (profilu). Na trhu jsou k dispozici v zásadě dva typy plastových rámečků a rámečky nerezové (místo hliníkových) se spoustou protichůdných odborných názorů o jejich kvalitě a parametrech.